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Parametric Analysis of Time-Related 
Events:  Procedures 
 
The Cleveland Clinic Foundation.1 

                                                 
1Inquiries concerning this procedure should be directed to Eugene H. Blackstone, MD at (216) 
444-6712. Our general e-mail address for inquiries about program availability, installation or 
functioning is hazard@bio.ri.ccf.org.  Mail to that address is simultaneously received by Dr. 
Blackstone and Mr. John Ehrlinger, the programmer currently supporting the procedures. The 
procedures, along with this documentation, examples, and useful macros, are available on the 
Internet at www.clevelandclinic.org/heartcenter/hazard. Specific data application questions are 
welcomed, directed either to Dr. Blackstone at blackse@ccf.org or to hazard support at 
hazard@bio.ri.ccf.org. 
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ABSTRACT 
Two SAS-interfaced procedures, PROC HAZARD and PROC HAZPRED, are described.  
These procedures constitute an analysis system for generalized completely parametric censored-
data analysis and display.  They utilize the scheme of decomposition of the distribution of times 
to an event (or of any positive variable) into up to 3 overlapping phases of hazard (competing 
risks),2 each phase scaled by a parametric function of concomitant variables.3  The equations and 
general methods for using the procedures are given in this overview, while details of syntax are 
given in the subsequent two documents specifying the procedures. 

INTRODUCTION 
This section reviews two procedures that are useful for analyzing the distribution of times until 
an event and of factors influencing that distribution:  HAZARD and HAZPRED.  The purposes 
of these procedures are as follows: 
 

HAZARD To build the model and estimate shaping and regression parameters 
HAZPRED To make predictions of the survivorship and hazard functions and their 

confidence limits, given a model specification, a set of parameter 
estimates from the HAZARD procedure, and an observation consisting of 
a time and values for variables within the model. 

 
 Although the parametric models described are functions of the distribution of times until 
an event, the modeling procedure is applicable to any positive valued variable, such as height or 
weight, length of hospital stay, or cost.  In this setting, the procedure may be particularly 
important for its handling of incomplete information.  For example weight data may have values 
known only to be greater than a stated number, the data may be interval histogram data that 

                                                 
2We have encountered a small number of situations that seem to require more than 3 phases to 
describe adequately the distribution of events, and a somewhat larger number that would best be 
modeled with, for example, two phases of the type used for the present early phase model.  A 
model with an arbitrary mix of early-phase-like models (improper distribution functions) and 
late-phase-like models (proper distribution functions) and a constant hazard phase would be a 
valuable extension of the ideas presented herein. 
3An enhancement that has been requested is an overall scaling function (that would be without its 
own intercept) for the entire model.  This is motivated first by the observation that some 
variables come into all phases with approximately the same strength.  Thus, these risk factors 
seem to have undiminished strength across all time, and the best coefficient estimate is likely to 
be the overall one.  It is also motivated by some who wish to compare a parametric model 
directly with a Cox semiparametric model.  The mathematics for this has been outlined (1989), 
and it awaits programming.  Another enhancement that has been requested is that other model 
parameters be allowed to be functions of concomitant information.  While such a model may not 
be as robust, and the computations more time consuming, we are considering this. 
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herein are handled as interval censored observations, or costs may be known only to be greater 
than a specific amount, perhaps because the patient at that point died. 
 The model and procedure is also generalized by means of a WEIGHT statement to 
encompass data that at the time of an event have a variable, measured response.  For example, 
the data may relate to times until a morbid event whose consequences can be expressed on an 
ordinal scale of severity, or the data may be device repair times for which a repair cost is 
associated. 
 The model is also generalized in this version to include a left censoring time (starting 
time).  While left censoring in biomedical applications of strictly survival analysis is not 
commonly employed, in fact the implicit use of left censoring is importantly general for the 
analysis of repeated events and a broad, specific class of time-varying covariables (see Kalbfleish 
and Prentice 1980).  Specifically, the longitudinal history of an individual can be divided into 
multiple epochs, each ending at the time of recurrence of a repeating morbid event.  Each epoch 
becomes an individual SAS observation, with a starting time (left censoring time) and an 
ending (event or censoring) time.  Similarly, the longitudinal record can be segmented according 
to discrete changes in a time-varying covariable.  This also can be expressed in terms of left 
censoring.  Thus, the addition of left censoring expands the capabilities of the procedures beyond 
those of the previous program that only could accommodate repeated events that were modeled 
as a modulated renewal process (see Kalbfleish and Prentice 1980), with starting time set to 0 for 
each epoch. 
 An important aspect of the procedure is the tools it provides the user for variable 
selection in multivariable analyses.  Unlike any other procedure we have encountered, selection 
control directly accompanies each variable.  This requires regular SAS users to violate one of 
their ingrained habits:  use of the space character to delimit variables.  This procedure uses a 
comma, since variable control information is “packaged” after each variable up until the next 
comma (or the traditional statement-end semicolon).  Among the tools available is the ability to 
select and include variables, order the selection process, exclude a set of variables once one of a 
set enters the model, specify starting values with a simple variable=value syntax, and use of 
stepwise variable selection by a variety of forward and backward methods.  In addition, variables 
outside the model are presented with first approximation signed regression coefficients, standard 
deviations, and P-values, so that the investigator can ascertain the appropriate influence of 
variables already in the model on those not yet entered. 

BACKGROUND 
The procedures are an application of parametric distributional analysis with or without 
concomitant information.  The procedures were developed to provide a general, mathematically 
tractable, statistically robust system of parametric survival distribution equations that would be 
applicable to a wide range of possible survival distribution shapes.  Thus: 

• The model belongs to the class of parametric survival models known as mixture distribution 
or competing risks models.  The distribution of events can be considered as a mixture of as 
many as three competing distribution models called in this documentation “phases.”  
Although all phases are defined over all time, each phase predominates in only one time 
frame and, therefore, can be expressed in rather simple form with few estimated parameters. 
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• Each phase consists of a parametric shaping distribution function scaled by a parametric 
scaling function of concomitant information. 

• Each shaping distribution function is a generic one that can be thought of as giving rise to a 
set of nested hierarchical submodels, with the simplest one that adequately fits the 
distribution being the one sought.  Thus, many of the parametric models currently in use are 
either submodels of the system used in this procedure or can  be approximated closely with 
one. 

• Each phase incorporates a separate stream of concomitant information (risk factors).  These 
are modeled as a log-linear (proportional hazards) parametric scaling function for each 
phase.4 The scaling parameter has been selected as the one most sensitive to concomitant 
information. 

• The mathematical form of the model has been developed with considerable care to give it 
attractive statistical and mathematical properties for maximum-likelihood estimation.5 

• Although the detail of the full system of equations designed to accommodate a very wide 
range of possible distribution shapes is of necessity complex, the specific distribution model 
developed for a set of data is usually a simple one with few shaping parameters. 

 
 Parametric analysis of time-related events is covered by a number of books on survival 
analysis (e.g. Gross and Clark 1975, Elandt-Johnson and Johnson 1980, Kalbfleish and Prentice 
1980, Lee 1980, and Cox and Oakes 1984).  Among the common distributions considered are the 
exponential, Weibull, Rayleigh, Gompertz, and Makem-Gompertz.  The HAZARD procedure 
provides a flexible, hierarchical family of distributions that include these distributions as special 
cases (see Table 1) and many more. The forms of possible models available in the procedure are 
listed in the next section, The Parametric Model.  It will be seen, for example, that the so-called 
early hazard phase model is that of an improper distribution, useful for data with high censoring 
prevalence, and the so-called late phase model is that of a proper distribution function.6 
 Few authors have considered concomitant information in the context of parametric 
analysis.  One of the early approaches (Feigl and Zelen 1965) using the exponential can be used 
with this procedure except that the constant hazard parameter is modeled as a log-linear function 
(Glass 1967), rather than as a linear function, of concomitant variables.  For examples of our own 

                                                 
4We have explored both logistic-linear and log-linear scaling functions.  In general, particularly 
for the early hazard phase, the log-likelihood is higher with the logistic-linear function than log-
linear.  However, the mathematics is less tractable and the logistic-linear form does not permit 
exact conservation of events (see later section).  Thus, we have elected to use the log-linear form. 
5In particular, this includes the use of logarithmic forms for all shaping parameters, since we 
discovered that such transforms tended to make more circular otherwise banana-shaped log-
likelihood contour plots of parameter pairs.  In addition, the early hazard phase is stabilized by 
use of a transform of variables to estimate the half-time for this phase.  A similar 
orthogonalizarion has not been found for the late phase, and consequently it is not as tractable. 
6By using the WEIBULL option for the late phase model, it can be used to model a decreasing 
hazard proper distribution.  An enhancement that is being explored is to make the late phase 
model a family of proper distributions by means of altered exponent signs, similar to the early 
phase model.   
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medical applications of the procedures, see Blackstone and Kirklin (1985), Blackstone (1986), 
Blackstone, Naftel, and Turner (1986), Kirklin, Blackstone, and Rogers (1985), Kirklin and 
Barratt-Boyes (1096), and McGrath and colleagues (1985). 
 The system of analysis implemented by the HAZARD procedure can also be thought of as 
an extension of Cox’s proportional hazard model regression (Cox 1972).  Semiparametric 
proportional hazard model regression employs a single log-linear function of the concomitant 
information as a scale function for an underlying and unspecified hazard function.  Such an 
analysis assumes of proportional hazards since the scale function modifies the underlying hazard 
proportionately across all time.  The HAZARD procedure differs in two important ways from 
proportional hazard regression: 

• When multiple phases of hazard are resolved from the distribution of an event, different risk 
factors may appear in each phase.  Thus, the influence of a specific risk factor on hazard will 
vary across time, depending upon the time-related predominance of the hazard phase into 
which that variable is incorporated. 

• The underlying hazard is a specified distribution with estimated parameters.  Therefore, 
graphical or numerical displays of solutions to the system of equations for survival and 
hazard at a specific time for a set of risk factor values is possible.  The HAZARD procedure 
coupled with the HAZPRED procedure can be used to exploit this major advantage of 
parametric analysis, including predictions demonstrating the effect of risk factors and 
demonstrating periods of high (or changing) risk. 
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Table 1 Implementation of Some Common Survival Distributions that are  
  Special Cases Of the General Model 
 
Distribution Hazard Function Phase(s) Specifications 
exponential µ1 constant  
Rayleigh µ1 + µ22t constant + late FIXGE2 

FIXGAE2 
(see Note 1) 

Generalized Weibull see late phase equations late WEIBULL 
Weibull µ3ηtη-1 late WEIBULL 

GAMMA=1 
FIXGAMMA 
ALPHA=1 
FIXALPHA 
(see Note 2) 

Gompertz µ3e
(t/τ)/τ late WEIBULL 

GAMMA=1 
FIXGAMMA 
ALPHA=0 
FIXALPHA 
ETA=1 
FIXETA 

Makem-Gompertz µ2 + µ3 e
(t/τ)/τ constant + late WEIBULL 

GAMMA=1 
FIXGAMMA 
ALPHA=0 
FIXALPHA 
ETA=1 
FIXETA 

 
Note 1: This specification results in τ=1, γ=1, α=1, and η=2. 
Note 2: If η is fixed at 1, then the Weibull reduces to a constant hazard. 
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THE PARAMETRIC MODEL 

Overall Model 
The parametric model is conceptualized in the cumulative hazard (Λ) domain as the sum of as 
many as three phases: 
 

( ) ( )Λ Θ Θ( , ) , ,t x G tj j j j j
j

=
=
∑µ β

1

3

 
(1) 

where t is time, µj is the log-linear parametric scaling function of concomitant information, and 
Gj is the parametric shaping function for each of the three phases. 
 The hazard function λ is the time derivative of the cumulative hazard function 

( ) ( )λ µ β( , ) , ,t x g tj j j j j
j

Θ Θ=
=
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(2) 

where gj is the time derivative of the shaping function Gj for each of the phases. 
 The survivorship function S is derived from the cumulative hazard function as 

[ ]S t t( , ) exp ( ,Θ Λ Θ= −  (3) 

 The death density function (probability density function) is the product of the 
survivorship and hazard functions. 
 Each of the phases and its shaping functions, expressed both in the cumulative hazard 
domain and the hazard domain, is discussed in one of the following sections. 

Early Hazard Phase Model 
The general early hazard phase parametric shaping model, expressed in terms of cumulative 
hazard G1 is 
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t>0, -1<δ<1, ρ>0, ν and m unbounded. 
 This model is based on the model of mortality developed by Turner and his colleagues 
(1982).  The important features are that G1(t) approaches zero as t approaches zero, and G1(t) 
monotonically approaches one as t approaches infinity.  Since early cumulative hazard is the 
product of µ1  (designated as MUE in PROC HAZARD) and G1(t), this early phase is assumed to 
be transient, accounting for a cumulative risk of µ1 and therefore 1-exp(-µ1) of the total 
probability of the event.  It is thus the description of an improper distribution function.   
 The general model can be reexpressed in terms of three generic models, each with a 
limiting exponential case.  The limiting exponential cases are derived from the general 
relationship 
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A
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Thus, the model parameter definitions are altered to accommodate there limiting cases.7 
 In addition to the model parameters, the computational parameter t1/2 is introduced, which 
aids in both the mathematical tractability of the model by orthogonalization and in making initial 
parameter guesses.  The parameter t1/2  is the time to 1/2 early phase cumulative hazard and is the 
computational parameter substituted for model parameter ρ.  
 While G1(t) approaches 0 as t approaches 0, its first derivative (the hazard function g1(t)) 
at that point may approach zero, infinity, or a finite number.  When the hazard function 
approaches a finite number at time zero, its confidence limits often widen unaesthetically about 
that point unless the exponents m and ν are fixed to values that generate an equation form that 
always has a finite value for the hazard funtion as t approaches zero.  To facilitate this, PROC 
HAZARD permits an option FIXMNU1 that fixes the relation between these shaping such that a 
finite intercept at time zero is achieved.  Footnotes below indicate what you should expect. 
 

m>0, ν>0 Generic Model8 
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Limiting Case 1:  m=0, ν>09 
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[ ]ρ ν= B t( ) ln( )/1 2 2  (11) 

 

                                                 
7We intend, in subsequent version, to explicitly put the equivalent of A into the model to explore 
the possibility of automated switching between exponential and non-exponential cases. 
8A finite hazard function value as t approaches zero is guaranteed when the product mν = 1.  If 
the estimates for model parameters M and NU appear to be approaching this relation (usually 
evident from plots of the hazard function and its confidence limits), use the option FIXMNU1 to 
guarantee a finite value. 
9The hazard function is always peaking (a value of zero as t approaches 0) when this equation 
form is found. 
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m<0, ν>0 Generic Model10 
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Limiting Case 2:  m<0, ν=0 
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m>0, ν<0 Generic Model11 
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Limiting Case 3:  m=0, ν<0 
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[ ]ρ ν= B t( ) ln( )/1 2 2  (23) 

                                                 
10The hazard function is finite as t approaches zero when model parameter M is fixed at -1. 
11When m=1 this equation reduces to that of the generic model m>0, ν>0.  The hazard function is 
finite as t approaches zero whenever ν=-1. 



Procedures Overview 12

Constant Hazard Phase Model 
The constant hazard phase parametric shaping model is modeled simply as  
 

G t2 =  (24) 
and 

g2 1=  (25) 
 
with t greater than or equal to zero.  It is scaled by µ2, designated as MUC in PROC HAZARD. 

Late Hazard Phase Model 
The late phase generic parametric shaping function is based on a four-parameter generalization of 
the Weibull distribution.  It has three special cases based on the generic expression and a limiting 
exponential case.  It is scaled by µ3, designated as MUL in PROC HAZARD. 
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t>0, τ>0, γ>0, α≥0, η>0 (see restriction on the product of γ and η below). 
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Special Case 1:  Delay before constantly rising hazard 

A form of the equation that we had thought might be particularly useful emerges when γη/α=2, 
η=2 and γ=α  Under these circumstances, as t/τexceeds one, g3 rapidly approaches 
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and the hazard function λ3 approaches 
 

( )λ µ τ τ3 3
22= −t /  (29) 
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λ 3

t

2 3
2µ τ/

Influenced by

η, α

Influenced by 
γ

τ

0
0

 
 Thus, τ is the time when the extension of the slope of the hazard function’s empirical 
depiction intercepts the baseline (hazard of 0); the slope of late phase hazard is 2µ3/τ2, estimated 
as the slope of the asymptote to the empirical hazard function; and γ determines the rate at which 
the asymptotic slope is reached.  In the generic case, η>2 displaces the curve to the right, further 
delaying the attainment of the slope µ3.  As α becomes small, the upper tail of the curve becomes 
more exponential in form, while at larger values of α the upper tail eventually curves downward. 

Special Case 2:  Weibull Model 

 Let α=1.  Of necessity, for purposes of having unique estimation of parameters, you must 
set τ=1 and γ=1.  Then 
 

G t3 = η (30) 
g t3

1= −η η  (31) 
 

Limiting Exponential Case 

Let α approach zero; reexpress τ in terms of α(1/γ); and use the relationship that  
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Special Case 3:  Gompertz Model12 

Let α approach zero (exponential form as above), η=1, and γ=1.  Then 
 

G e
t
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(34) 
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(35) 

 
 COMMENT:  In order to maintain separation of phases (and therefore to provide 
maximum opportunity to resolve individual hazard phases), the parameters of G3(t) have been 
restricted in the default mode so that g3(t), the time derivative of G3(t), has the following 
properties: 

• As t approaches 0, g3(t) approaches 0. 

• The first time derivative of g3(t) is positive (that is, g3(t) is rising for all t). 

• The second time derivative of g3(t) is positive (that is, g3(t) is concave upward for all t). 
 
However, the facility to remove deliberately the above restrictions on the relationships of late 
phase parameters is also part of the procedure, controlled by the keyword WEIBULL (see 
SPECIFICATIONS in The HAZARD Procedure section later in this documentation).  If the 
parameters are simply constrained to be positive, then the late phase can, for example, become an 
alternative way to model a single early phase as a proper, complete distribution rather than a 
transient (incomplete, improper) one, because its scale factor is not related to a finite area 
beneath the hazard function.  It thus becomes a generalized Weibull model of up to five 
parameters (µ3, t, γ, α, and η). 

                                                 
12Notice that this model has a finite intercept of 1/τ when t approaches zero.  In keeping with the 
idea of identifying phases of hazard, we would recommend that the Gompertz model be 
considered as a two-phase situation whereby there is an identifiable constant hazard phase 
(equivalent to µ3/τ) and a simple exponential increase, probably well fitted by a simple Weibull. 
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CAUTIONS 

Data Definitions and Considerations 
The most important (though rarely discussed) aspect of the analysis of time-related events is the 
process of establishing study-specific definitions for the event, for censoring, and for the time 
interval during which each individual is exposed to risk.  For a review of these considerations, 
see Blackstone (1986). 
 Defining the event for an analysis may be straightforward, such as death from any cause.  
Other events may be of more interest and often require a clear definition.  For example, if you are 
interested in interim survival between a palliative operation and the definitive repair, only deaths 
in this interim period are events, and individuals either alive or dead after the repair are censored 
(see below).  (NOTE:  this is an example of competing risks of events, and may introduce into 
the analysis so-called informative censoring).  Other events of interest may be in reality time-
related processes, such as degeneration of a prosthetic heart valve.  The event then must be 
defined as one related to the severity of the process, such as need for replacement of the valve.  
Caution must be exercised in the interpretation of such analyses since the timing of the event may 
be related not only to the rate of progression of the process, but to an individual’s response to the 
process, sensitivity to symptoms, and physician- or surgeon-specific factors. 
 Individuals who have not yet experienced the event of interest and become untraced for it 
are termed “censored.”  Their information is useful until that time but is incomplete as regard to 
the time until the event.  In typical medical applications, there are two general mechanisms by 
which an individual becomes censored. 

• Censoring may result from the fact that the event has not occurred prior to the time the study 
period has ended, or the individual has become lost to follow-up during the study period.  
This occurrence represents incomplete data concerning the event since the individual remains 
at risk for the event.  In this category of censoring are individuals that have not been able to 
be traced during the follow-up inquiry.  Such losses are serious since it is assumed that the 
censoring mechanism is uncorrelated with the event of interest.  One of the most frequent 
reasons for the loss of an individual to follow-up is death!  Thus, informative censoring may 
result. 

• Censoring may result at the time an individual ceases to be at risk for the event.  In the 
example of interim deaths cited above, this second mechanism of censoring is applicable at 
the time of definitive repair.  This category of individual does not represent incomplete data, 
but for time arbitrarily long, these individuals will always be censored.  Both forms of 
censoring are subcategories of what is known as right-censored observations. 

 
 Calculation of the interval of follow-up requires a definition of entry into the study 
(time=zero, or beginning of being at risk for the event) and the time of the subsequent event or 
censoring.  (Note that PROC HAZARD can accommodate repeated events, implemented by 
segmenting the individual’s longitudinal record into inter-event observations, marked by a 
beginning time, left censoring, and an event or final censoring time).  Time zero is little problem 
if it is birth or the time of starting or finishing a procedure.  It is more problematic if it is a date 
of diagnosis or onset of symptoms, since subjectivity is introduced.   
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 Situations may also arise when the actual time of the event is unknown and the only data 
available are the beginning and ending of a known interval during which the event occurred.  
These events are said to be interval-censored.  The HAZARD procedure allows for interval-
censored events. 
 The interval of follow-up can be calculated using SAS calendar functions.  The shorter 
the interval, the more precisely it needs to be timed from study entry.   
 To best satisfy the assumptions underlying all methods for analyzing time-related events 
from longitudinal follow-up information, the common closing date method for follow-up is 
recommended.  In this method a specific time for study closure is selected and all events and 
censoring are of that one date. 
 Variables being considered for examination as possible risk factors should be those 
pertaining at the time of study entry.  It is tempting to include variables that occur after that time 
(such as serious, but not fatal, intercurrent events), but such variables may lead to spurious 
inferences.  Incorporation of variables that change with time are properly considered to be time-
varying covariables and are discussed below. 

Time-Varying Covariables 
Variables that may take on different values over the course of the follow-up study after time zero 
are called time-varying covariables.  The HAZARD procedure does not implement the general 
case of time-varying covariables, but does implement an important subset of them, namely, 
discretely changing time-varying covariables.  In the implementation, the patient’s longitudinal 
record is segmented into multiple observations during each of which the time-varying covariable 
is at a fixed value.  The left censoring variable identifies the time at which the level (value) 
changes, and the censoring (or event time) the duration over which the variable remains at that 
value.  (NOTE:  consideration must also be given to the possible use of a modulated renewal 
process whereby the individual segments are shifted down in time to a new time zero).   

Resolution of Phases 
If there is a single early phase of hazard and virtually all subjects are uncensored (that is, 
experience the event being analyzed), µ1 will increase without bound, as will t1/2.  This reflects, 
accurately, an infinite cumulative hazard, not an asymptote.  This situation violates the 
assumption that the early phase is an improper distribution function (transient phase).  Provision 
is thus made to use the late phase model as an early phase model in the form of a generalized 
Weibull.13   
 

                                                 
13In future versions, we plan to generalize further the late phase model to allow it to have the 
same flexibility as the present early phase model, making this process easier to accomplish. 
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DETAILS 

Computational Reparameterization 
For robust estimation, each of the model parameters has been reexpressed on a limitless scale 
(generally a logarithmic one after adjusting for imposed parameter constraints).  The shaping 
parameters are defined partly in the context of the other model parameters (see Table 2). 
 
 
Table 2 Relation of Model Parameters to Computational Parameters 
 
Procedure Parameter 
Name 

Model Parameter Name Computational 
Reparameterization 
Expression 

Notes 

Early    
E0 MUE ln(µ1)  
E1 DELTA ln(-ln(δ))  
E2 THALF ln(t1/2) Note 1 
E3 NU ln|ν| Note 2 
E4 M ln|m| Note 2 

Constant    
C0 MUC ln(µ2)  

Late    
L0 MUL ln(µ3)  
L1 TAU ln(τ)  
L2 GAMMA ln(γ) Note 3 
L3 ALPHA ln((γn/α)-2) Note 4 
L4 ETA ln((γη)-2) Note 5 

 
Note 1:  THALF, t1/2, is related to model parameter r as described in model equations (8), (11), 

(14), (17), (20), and (23). 
Note 2:  If FIXMNU1 is specified, E3 = ln|mν| or E4 = ln|mν|, depending upon which parameter, 

M or NU, is chosen to be fixed. 
Note 3:  ln((γη) - 2) if γh is not fixed at 2.0, WEIBULL option has not been selected, and η is 

fixed. 
Note 4:  ln(α) if γη/α is fixed at 2.0 and γη is not fixed at 2.0, or if WEIBULL option has been 

selected. 
Note 5: ln(η) if γη is fixed at 2.0 or WEIBULL option has been selected 
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Model Building Strategy 
It is strongly recommended that the structure of the model be determined prior to incorporation 
of concomitant variables.  It is also suggested that for initial screening of variables with the 
SELECTION options, the shaping parameters of the model be fixed at their previously estimated 
values; by doing so, computational speed is increased by an order of magnitude or more.  Only as 
a final step would the complete model be estimated.  This sequential strategy has been found to 
be the least expensive of resources. 

Initial Parameter Specification 
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 This graph shows a typical cumulative hazard plot for a time-related event.  It might have 
been generated by logarithmic transformation of the nonparametric product-limit survival 
estimates.14  The plot demonstrates possibly three phases of hazard.  The first is an early transient 
phase with MUE of about 0.02 and THALF of about 1 month.  The estimate of MUE=0.02 was 
obtained by using a straight edge along the flat portion of the curve between about 6 months and 
30 months and determining where this intersected the vertical axis.  One half this value is 0.01.  
In the nonparametric numerical life table of values, we looked for a time when cumulative hazard 
was about 0.01.  This gave us THALF.  (We would eventually explore each of the 3 branches of 
the early hazard phase generic equations by setting M=1 NU=1, M=-1 NU=1, and M=1 NU=-1 in 
sequential order). 
 The intermediate constant hazard phase appears to rise about .01 units in about 30 units 
of time, so we would estimate MUC=0.00033. 
                                                 
14For example, you may use the SAS PROC LIFETEST to generate product-limit estimates that 
are then log transformed to cumulative hazard.  Alternatively, may use the /macro/kaplan SAS 
macro that is in the examples file that accompanies this procedure.  See ac.death.AVC for usage 
information. 
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 We would select the WEIBULL option for the late phase model, with ALPHA=1 
FIXALPHA TAU=1 FIXTAU ETA=1 FIXETA GAMMA=2 FIXGAMMA and an arbitrary 
small value for MUL such as 0.001.  This would give us a rising Weibull phase of hazard with an 
exponent of 2 that would later be estimated. 
 The next step is to FIX all shaping estimates (e.g., THALF=1 FIXTHALF NU=1 FIXNU 
M=1 FIXM, and the above fixed late phase parameters).  We would turn off conservation of 
events (NOCONSERVE).  Then the procedure would be run to yield the best estimates for the 
three scale factors (MUE, MUC, and MUL).  From that point on, we would run with 
conservation of events turned on (CONSERVE), using the scaling factor estimates obtained from 
this first run as starting values.  This strategy has been found effective, and indicates that the 
scaling factors are quite sensitive to the shape of the hazard function.  Once these scaling factors 
are found, shaping parameters are usually easy to estimate.   
 In the above figure, it is possible that the value for MUC may become vanishingly small, 
possibly with a large standard error, indicating a constant hazard phase is not needed.  Indeed, 
often it is not possible to resolve more than one or two hazard phases, and attempting to do so 
may result in computational intractability. 
 It has been our experience that the shape of the early phase is rather easily estimated so 
long as there is, indeed, an improper distribution function (THALF is reasonably small and MUE 
is reasonably small).  We caution the user that you should expect to obtain computational 
singularities if the log of M or NU tends to go to minus infinity.  This is a valid singularity!  It 
simply means that the value of M or NU is zero, and one should fix the parameter at that value 
(the limiting exponential case).  Occasionally M or NU becomes large, and in these situations, 
often one of the other branches of the generic equation tree is better suited and simpler. 
 If an early hazard phase seems to be present, but THALF becomes very large, along with 
MUE also becoming large, an improper distribution function is not present.  In this case, the 
LATE hazard phase model (with WEIBULL option selected) can be used as a substitute.  (In this 
regard, the late hazard phase is the most flexible model.  To get an idea of the general shape of 
the underlying hazard, it is sometime instructive to fit all the data with only the late phase model 
with all its parameters freed.  If convergence can be obtained, or even a few iterations, the 
resulting hazard shape may suggest the hazard components likely to be required). 
 The LATE hazard phase is the most troublesome to fit, in part because we have as yet 
been unable to orthogonalize its parameters to the degree we have been successful in the EARLY 
phase model.  This remains future work.   

Implementation and Support 
 The procedure is currently distributed for systems using the UNIX operating system as 
source code in the C language.  For personal computers the procedures are distributed as object 
code from compiled C code.  The interface to SAS requires a macro that a) generates a 
transport data file that is readable by an external program, b) calls the hazard procedures, and c) 
imports output from the procedures.  While this is more cumbersome, and doubles the memory 
requirement for data storage, than the previous versions that have been linked to SAS via their 
Toolkit, the present version potentially permits interfaces to systems other than SAS, and 
protects us from the stated intent of SAS to do away with the Toolkit interface in Version 7.  
For former users of the procedures, we call your attention to the SYNTAX section of the 
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documentation, since the PROC HAZARD and PROC HAZPRED statements must now be 
enclosed within a macro call.   
 The procedures are available from the authors on the Internet at 
www.clevelandclinic.org/heartcenter/hazard .  This page gives details about further steps 
necessary for downloading, installing and testing the procedures.  This documentation is 
available at this site, as are examples and useful macros. 
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